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Abstract: In order to approximate the fixed points of a contractive mapping,
a new three-step iteration approach is proposed in this study. Additionally, the
suggested scheme’s stability and convergence are taken into account, and its efficacy
for various problems is explored. The novel technique outperforms all the well-
known three-step strategies that are currently accessible in the literature, according
to several experiments that are described.
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1. Introduction

Fixed point (FP) problems may be used to create a wide range of mathematical
issues, including systems of nonlinear equations, integral and differential equations,
systems of linear equations, variational analysis problems and optimization theory
problems. The reader is directed to ([5], [4], [3], [18]) for the latest recent work on
FP issues and related problems. The approximate solution to these issues and the
conditions under which they can be solved are investigated using FP theory. The
FP of any given nonlinear function cannot be found using any universal closed-form
formula. For this reason, FP iterative algorithms offer a sophisticated and effective
method of computing them.
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Numerous classical iteration techniques are used on metric spaces and normed
linear spaces with a convexity structure in the FP theory literature.
Let (H,h) be a metric space and W : H x H x [0,1] — H be a mapping. If

b(ulu W<u2au37:u)) < Mb(ulqu) + (1 - M)[)(ulaufi)? Vul,ug,U{g € H and VS [07 ]-]7
(1.1)

then (H,h, W) is called a convex metric space (CMS) [17].

The iteration technique that carries Picard’s name, was established in 1890. A

Picard sequence [13] of the beginning point {ug} is defined as

un—l—l == Runa (12)

where R : H — H is a mapping.
Mann introduced the concept of the Mann iteration [12] in 1953. Mann iteration
can be expressed as

Upt1 = W(Runa Uy, un)a (13)

where {a,} is a sequence in [0,1].
Ishikawa [11] proposed an extension of the Mann iteration, as described by

(1.4)

v, = W<Run7 Up, bn)7
U, 1 = W(Ro,,u,,a,)

where {a,} and {b,} are real sequences in [0, 1].

Multiple iteration strategies have been created over the years by different re-
searchers to approximate fixed points of various non-linear operators in appropriate
normed spaces and metric spaces ([2], [8], [9], [14], [16]).

In 2018, a novel three-step iteration approach was introduced by Abbas et al. [1].
It is as follows:

v, = Rw,, (1.5)
Upr1 = a,Ro, + (1 —ay,)o,
where {a,} is a sequence in (0,1).
The three-step iteration process that Ali and Ali [7] developed in 2020 is charac-
terized by the sequence {a,}, a, € (0,1) and

w, = R(a,Ru, + (1 — a,)u,, a,),
un+1 = Rbn
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Sharma et al. [15] presented an innovative three-step iteration strategy in 2023. It
looks like this:

o, = K u, + L Ru
b, = Riv,, (1.7)
Upt1 = Rnna
where k > 0 is a real number.
In context of CMS, (1.5), (1.6) and (1.7) respectively can be written as:
o, = Runa
v, = Rmn; (18)
U1 = W(Ro,,0,,a,).
1w, = R(W(Ru,,u,,a,)),
v, = Rmna (19)
un+1 - Rbn
k
mn - W un7 Run; R
k+1
0. — Rio,. (1.10)
Upi1 = RUn

2. Preliminaries
The terminologies and research covered in this part will be used to support our
main conclusions.

Definition 2.1. [6] Let H : R — R be an operator and (R,Y) be a metric space.
Then H s said to be ¢ contraction if there exists ¢ € [0,1), such that :

h(Huy, Huy) < ch(ug,ug), for alluy,us € R. (2.1)

Definition 2.2. [6] Let {s,} and {t,} be two sequences of positive numbers that
converge to s and t, respectively. Assume that there exists the following limit:

lim [sn =8| _

=b.

(i) If b =0, then it is said that {s,} converges faster to s than {t,} to t.
(11) If 0 < b < 1, then it is said that {s,} and {t,} have the same rate of conver-
gence.



326 South FEast Asian J. of Mathematics and Mathematical Sciences

Definition 2.3. [6] Assume that we have two iteration sequences, {9,} and {e,},
both converging to a FP c.
Let {s,} and {t,} be two sequences of positive numbers, such that:

h(0,,¢) < s, for alln € N,

H(en, ) < t,, for alln € N,

where {s,} and {t,} converge to 0. If {s,} converges faster than {t,} in the sense
of Definition 2.2, then {0,} is convergent faster than {e,} to c.

Definition 2.4. [10] Let ¢ be a FP of R: H — H. Let {u,} be a sequence defined
as U, 1 = p(R,uy,), where n = 0,1,2..., converge to ¢ for each uy € H. Consider
a random sequence {v,}, and define €, = h(u,,v,). Then, the {u,} is referred as
T-stable if and only if ILm €n=0= li_}rn v, = .

The literature containsné roglatively lim?te?do quantity of effective three-step FP meth-
ods. This fact serve as our inspiration for creating a new, three-step scheme that

outperforms the majority of FP methods that are already in use.

3. Main Results
We introduce a new three-step iterative approach in this portion, which is de-
scribed as follows:

Let (R,h, W) be a CMS and R : H — H be a self-mapping.

k
n:RW n7Rn7— )
o= (0 (s A )

v, = R,
un+1 - Rbn,

where k£ > 0 is a real number.

3.1. Convergence
In the present subsection, we will demonstrate the convergence of (3.1).

Theorem 3.1. Let M be a closed convex subset of a complete CMS (H,h, W), and
let R: M — M be a mapping satisfying (2.1) with FP c. Let {u,} be defined by
(3.1) and ug € M. Then {u,} converges to the unique FP of R.

Proof. We will prove that 7}1_)1{)10 h(uy,,¢) =0.

oo {o(r s 5t1))
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(o))

< g(kL_Hf)(un, ¢) + (1 - %)h(Rum C))

<ot + (5 o). (32)

h(nnv C) = h(Rmm C)
< ch(to,, ¢), (3.3)

b(un-l—la C) = h(RUm C)
< <h(bn, c). (3.4)

Hence, lim H(u,, ) = 0.

n—oo

3.2. Stability
The stability of (3.1) will be shown in this subsection.

Theorem 3.2. Let M be a closed convex subset of a complete CMS (H, by, W), and
let R be a < operator with F(R) # ¢. Assume that ug € M, and the sequence {u,}
is defined by (3.1). Then, the iteration (3.1) is T stable.

Proof. Assume {p,}32, C M is an arbitrary sequence, €, = h(p,, Rq,_1), where

k .
On—1 = Rty_1, toy = R(W (Pn—h Rp,_1, m)) and let nh_{glo €, = 0.

Now,

H(Pn, ) < b(pn, Rp—1) + H(Rn-1,¢)
S €n + gh(qn—la C), (36)

h(qnfb C) S h(Rtnfh C)
S gf)(tn—h C), (37)
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b(tn-1,¢) Sb( < (pn 1 Rpn— 1,ki1)) c)
S@b(( (pn L, Rp,_ 1’k—kk1)) c)
<o(en 0+ (1 7 Jsbienno)

(kilb(pn 1,6) + <ki1>h(pn_1,c)). (3.8)
By (3.6), (3.7) and (3.8), we get

b(pn,€) < €+ ()BT, 0)

k
< en+(g)3_<kii>b(pn_1,c). (3.9)
Thus, li_>m H(pn,c) =0 by [[8], Lemma 4].
Conversely, assume ILm H(pn,c) =0.
€n = b(pn, Rqn-1)
S b(pna C) + h(c7 an 1)
S b(pna C) + Cf)(CIn 1, )
< B(pn, ) + (g)Qb(tn 1,¢)
k
<000, 4 (9113 )bl

Hence, lim ¢, = 0.
n—oo

3.3. Comparison with various iterative scheme
In the present subsection, we will compare the rate of convergence of various iter-
ative schemes with our scheme (3.1).

Theorem 3.3. Let M be a nonempty, closed, and convexr subset of a complete
CMS (H,bh,W). Let {s,} and {u,} be the sequences defined by iteration (1.6) and
(3.1) respectively with the same initial guess {so} and R be a s-contraction. Ad-
ditionally, suppose that 0 < a < a, < 1, and k > 0 is a real number such that
a(k+ 1) < 1. Then, iteration (3.1) converges faster than (1.6).

Proof. By (3.5) in Theorem 3.1, the following inequality can be obtained:

k n+1
h(um C) < <§)3(n+1) (k——i-l + 2 _§|— 1) b(uo, C). (3.10)
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It is simple to see that the iteration process (1.6) takes the following form by using
similar reasoning as in Theorem 3.2

B(sn,¢) < ()*™ (1 — (1 — ¢)an)h(so, ¢). (3.11)
As,a<a, <1

(1-(1=¢)a,) <(1—-(1=c)a),

H(l —(1=Q)ay) < (1— (1 —¢)a)™,

=0

Using (3.11),we have

b(sn, €) < (<)’ (1 — (1= <)a)" (s, c). (3.12)

Assume
n+1

¢, = (g)3n+Y (kLH + o ° > b (o, c),

D, = ()’ (1 = (1= ¢)a)" (s, ¢)
and k n+1

@ () b
Tn:&: k+1 k+1 . (3.13)

O ()2 (1 = (1 = <)a)"+*h(so, ¢)

Since, uy = s9

n+1
(§)3(n+1) L + S
¢ k+1 k+1

T, = 2% = 3.14

D, (Q (n+1)(1 — (1 — g) )n+1 ( )
By using a(k + 1) < 1, we get

k
k ¢ <k+1+ki1)

1—(1- > = < 1. 3.15

(1=(=ca) (k+1+k+1) 1—(1-9a) (3.15)

Hence, lim Y, = 0. It can be concluded that {u,} converges faster than {s,} by

n—oo

applying Definitions 2.2 and 2.3.
By following the same procedure, it can be demonstrated that (3.1) converges more
quickly than (1.5) and (1.7).
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Example 3.1. Let H : [0, 1] — [0, 1] be a mapping defined by Hu = %e“. Suppose

an

1
n-+6

and k = 0.5, with uy = 0. Iteration (3.1) requires 20 number of

iterations to converge to FP ¢ = 0.619061286735945, while (1.5), (1.6), and (1.7)
need 35, 24, and 28 number of iterations, respectively.

The following table compares the rate of convergence of different iterations with

the same initial guess.

052
051
0.48

5

10 15 20

Iteration number (n)

n || {u,}
Iteration (1.5) Tteration (1.6) Tteration (1.7) Iteration (3.1)
1 0.474572084240672 | 0.534842211762562 | 0.505438286356170 | 0.552570637926451
2 0.572039708402158 | 0.601513769685729 | 0.589545513659980 | 0.608044973133556
3 0.602450809915476 | 0.615142918377830 | 0.610836522400626 | 0.617133195225655
4 0.613020688199426 | 0.618170552952124 | 0.616726656911940 | 0.618720694366165
5 0.616837509890812 | 0.618857461812156 | 0.618395161418170 | 0.619001024242677
6 0.618237609459136 | 0.619014474448451 | 0.618870946249506 | 0.619050621171085
7 0.618755079680769 | 0.619050506599855 | 0.619006875536929 | 0.619059398993802
8 0.618947158574880 | 0.619058798797368 | 0.619045730755306 | 0.619060952613706
9 0.619018663363014 | 0.619060711471222 | 0.619056839180713 | 0.619061227597652
10 || 0.619045341353993 | 0.619061153505531 | 0.619060015138771 | 0.619061276268702
11 || 0.619055312888449 | 0.619061255835707 | 0.619060923173536 | 0.619061284883284
12 || 0.619059045799359 | 0.619061279560101 | 0.619061182789716 | 0.619061286408031
13 || 0.619060445146567 | 0.619061285067630 | 0.619061257016643 | 0.619061286677906
14 || 0.619060970351249 | 0.619061286347681 | 0.619061278238889 | 0.619061286725672
15 || 0.619061167685166 | 0.619061286645502 | 0.619061284306549 | 0.619061286734127
16 || 0.619061241901309 | 0.619061286714859 | 0.619061286041355 | 0.619061286735623
17 || 0.619061269838243 | 0.619061286731025 | 0.619061286537355 | 0.619061286735888
18 || 0.619061280362910 | 0.619061286734796 | 0.619061286679166 | 0.619061286735935
19 || 0.619061284330779 | 0.619061286735677 | 0.619061286719711 | 0.619061286735943
20 || 0.619061285827702 | 0.619061286735882 | 0.619061286731304 | 0.619061286735945
0.62
06
- 0.58 |
3
5 056
;3; 0.54 |
=

Figure 1: Comparison of rate of convergence of Various Iterative Techniques
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4. Conclusion

This study presents an iterative method for solving fixed point problems numer-
ically. In order to compare the performance of the suggested approach with that
of the current methods, a nonlinear issue example is taken into consideration. The
results of the studies show that this approach consistently outperforms other well-
known techniques, leading to a faster convergence speed and improved efficiency
in locating fixed points.
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